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Abstract. Integral identities for particular Bloch functions in finite periodic systems are derived. All fol-
lowing statements are proven for a finite domain consisting of an integer number of unit cells. It is shown
that matrix elements of particular Bloch functions with respect to periodic differential operators vanish
identically. The real valuedness, the time-independence and a summation property of the expectation values
of periodic differential operators applied to superpositions of specific Bloch functions are derived.

PACS. 3.65.Fd Algebraic methods – 03.65.Nk Scattering theory – 3.65.Ge Solutions of wave equations:
bound states – 73.21.Cd Superlattices

1 Introduction

The solutions of periodic systems with periodic bound-
ary conditions (PBC), known also as Born-von Kármán
boundary conditions, and of finite periodic systems with
complete quantum confinement (CQC), are characterized
by a discrete spectrum of the Bloch quasi-momentum q.
In contrast in finite systems with open boundary condi-
tions (OBC), solutions do exist for any real value of q, as
in an infinite periodic system.

In the literature general orthogonality relations for
Bloch waves can be found only for either (i) infinite sys-
tems or (ii) systems with either PBC or CQC, but not
for systems with OBC. Nevertheless, locally periodic re-
gions of finite length L with open boundary conditions are
more realistic models of crystals than systems with peri-
odic boundary conditions which have been studied exten-
sively in the literature.

In this paper we derive vanishing integral relations
valid for particularly chosen Bloch functions occurring in
finite periodic systems consisting of an integer number of
unit cells with either PBC, CQC or OBC. The latter per-
tain to finite-size crystal models as well as semiconductor
superlattices. These integral relations include orthogonal-
ity relations and conditions for the vanishing of matrix
elements. The choice of Bloch functions in these relations
is directly related to the symmetry group of a system in
which periodic boundary conditions are imposed at the
ends of the finite periodic potential. However, the rela-
tions we derive are not restricted to “quantized” values of
q which correspond to systems with PBC or CQC only, but
hold also for uncountably many well-defined combinations
of wave numbers q from the continuous quasi momentum
space. On this basis we study properties of specific linear
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combinations of Bloch functions. Our results indicate that
the large body of group theoretical results on systems with
PBC can also be applied to more realistic models with no
apparent symmetry whatsoever.

The paper is organized as follows. In Section 2 we
shortly review some important properties of the solutions
of the Schrödinger equation in the case of (finite) peri-
odic one-dimensional potentials. In Section 3 we state the
fundamental result on vanishing integral relations for fi-
nite periodic systems [cf. Eqs. (13), (14) and (15)], which
is a generalization of the well known selection rule the-
orem for PBC. Subsequently in Section 4 we discuss ap-
plications of this main result to vanishing integrals in-
volving resonant Bloch functions [as defined in Eq. (11)],
vanishing matrix elements of specific Bloch functions and
orthogonality relations. Finally in Section 5 we consider
special properties – among them time-independence and
real valuedness – of physically relevant expectation val-
ues of Bloch functions and superpositions thereof in open
finite systems. Appendix A contains concepts which are
subsequently used for a group theoretical proof of equa-
tion (13).

2 Schrödinger equation for (finite) periodic
one-dimensional potentials — Fundamentals

It is well known that the fundamental solutions of the
time independent one-dimensional Schrödinger equation
with an infinite periodic potential (with period d)

ĤΨ(x) =
[
− �

2

2m

d2

dx2
+ Vper(x)

]
Ψ(x) = EΨ(x),

Vper(x + d) = Vper(x), (1)
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inside an allowed band are Bloch functions [1] ΨB
q̃ (x),

given by

ΨB
q̃ (x) = uq̃(x) exp(iq̃x), uq̃(x + d) = uq̃(x), q̃ ∈ R,

(2)
where q̃ denotes the energy dependent Bloch wave number
or quasi momentum [2].

To obtain the Bloch wave number q in the “reduced
zone scheme” [2] the minimal residue of q̃ mod 2π/d
is taken. As is well known this “folds” the Bloch wave
number from the nth to the first Brillouin zone q ∈
(−π/d, π/d]. In this reduced zone scheme the original
Brillouin zone number is added as band index n. Then
equation (2) reads

ΨB
q̃ (x) = ΨB

n,q(x) = un,q(x) exp(iqx),

un,q(x + d) = un,q(x), (3)

which satisfies ĤΨB
n,q(x) = En,qΨ

B
n,q(x). The relation

En(q) := En,q is known as a dispersion relation. Due to
Kramers degeneracy En,q = En,−q. Therefore any super-
position [3]

ΨB
n,(q,−q)(x) = α+ΨB

n,q(x) + α−ΨB
n,−q(x) (4)

with arbitrary α+, α− satisfies ĤΨB
n,(q,−q)(x) =

En,qΨ
B
n,(q,−q)(x).

2.1 Periodic boundary conditions

Since the introduction of Bloch functions their properties
have been studied in detail mostly for systems with peri-
odic (Born-von Kármán) boundary conditions (PBC), i.e.
Ψ(x) = Ψ(x + Nd). These PBC imply a quantization of
the Bloch wave number in equation (3) in the form of

q
(k)
PBC = 2kπ/Nd, k ∈ KPBC := {−�(N − 1)/2�, . . . ,

−1, 0, 1, . . . , �N/2�} ⊂ Z, (5)

but no restriction on α+ and α− in equation (4). The set

QPBC :=
{
q
(k)
PBC, k ∈ KPBC

}
, |QPBC| = N (6)

forms a finite cyclic group 〈QPBC,⊕〉, where the group
operation ⊕ is addition modulo 2π/d with minimal residue
taken, i.e.

q1⊕q2 :=

⎧⎨
⎩

q1 + q2 + 2π/d if q1 + q2 ≤ −π/d,
q1 + q2 if − π/d < q1 + q2 ≤ π/d,

q1 + q2 − 2π/d if q1 + q2 > π/d.

(7)

2.2 Complete quantum confinement in finite periodic
systems

Recently, interest in studying properties of finite locally
periodic quantum systems has turned up [4–11]. One op-
tion to address such finite systems is to introduce complete

quantum confinement (CQC)[6,11], i.e. Ψ(0) = Ψ(Nd) =
0. The wave number quantization of the real [12] Bloch
wave number in equation (4) in this case yields a set

QCQC : =
{
q
(k)
CQC = kπ/Nd,

k ∈ {−N + 1, . . . ,−2,−1, 1, 2, . . . , N − 1}
}
, (8)

|QCQC| = 2N − 2,

but with the additional restriction: α++α− = 0, if un,q(0)
is chosen to be real. Note that due to this constraint the
wave numbers q

(k)
CQC and q

(−k)
CQC always jointly appear in

equation (4). The set QCQC coincides with the set Qres

below [cf. Eq. (11)] and can analogously be closed to a
group.

2.3 Open boundary conditions for finite periodic
systems

The potential of an open, finite N -fold periodic system [4,
7,9,10] is

V (x) =

⎧⎨
⎩

0 if x ≤ 0,
Vper(x) if 0 ≤ x ≤ L = Nd,

0 if x ≥ L.
(9)

The (rigged) Hilbert space of this problem is not restricted
to the interval [0, L] but extended to the whole real line. In
an open system, solutions (also called scattering states) in
the form of equation (4), exist for 0 ≤ x ≤ L for all Bloch
wave numbers in (−π/d, π/d]:

Ψ(x) =⎧⎪⎨
⎪⎩

AL exp[ik(En,q)x]+BL exp[−ik(En,q)x] if x ≤ 0,

α+ΨB
n,q(x)+α−ΨB

n,−q(x) if 0 ≤ x ≤ L = Nd,

AR exp[ik(En,q)x]+BR exp[−ik(En,q)x] if x ≥ L.

(10)

The ansatz for Ψ(x) for 0 ≤ x ≤ L has for example been
discussed in reference [10], Section V.A. Hence the Bloch
wave number q is not quantized, and there are no restric-
tions on the coefficients α±, as in the PBC system.

By considering resonant states (with a transmission
probability of unity and a reflection probability of zero)
of an open system with a potential given by equation (9)
a new kind of “quantization” arises. The set of discrete
q-values that belong to Fabry-Pérot resonances [13] of the
open system is given by [4,13,7,9]

Qres :=
{
q(k)
res = kπ/Nd = 2kπ/2Nd,

k ∈ {−N + 1, . . . ,−2,−1, 1, 2, . . . , N − 1}
}
, (11)

|Qres| = 2N − 2.

This quantization corresponds to a PBC system with 2N
periods. The “doubling” of the number of periods is funda-
mentally related to the fact that resonant wave functions
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fulfill the relations [4,9] Ψ(0) = ±Ψ(Nd) which means
that Ψ(0) = Ψ(2Nd). It is possible that additional non-
Fabry-Pérot resonances exist which are due to transmis-
sion resonances in the unit cell [4,9,10,13] but these are
outside the scope of the current paper.

Note that the union of Qres with the set of q values
belonging to the band edges, i.e. Q̃res := Qres ∪ {0, π/d},
forms together with the operation ⊕ a group and |Q̃res| =
2N . Obviously, as 2q

(k)
res = q

(k)
PBC, Q̃res = QPBC ∪ (q(1)

res ⊕
QPBC).

3 Vanishing integrals involving products
of Bloch functions

In this paragraph we state fundamental integral identities
which emerge in the analysis of Bloch waves in finite pe-
riodic systems (see e.g. Ref. [10]). To our best knowledge
these identities are presented below in a general form for
the first time.

The group 〈QPBC,⊕〉 [cf. Eq. (6)] is a discrete (nor-
mal) subgroup of the compact continuous one-dimensional
rotation group 〈Qd

c ,⊕〉, where

Qd
c := (−π/d, π/d]. (12)

The following fundamental integral identity holds:

R⊕
r=1

qr ∈ QPBC\{0} ⇒

∫ Nd

0

dx
djfper(x)

dxj

R∏
r=1

djrΨB
nr,qr

(x)
dxjr

= 0, (13)

where the Bloch wave vectors qr ∈ Qd
c ,
⊕

denotes a sum
with respect to the group operation in Qd

c , the order of
differentiations j, jr ∈ N ∪ {0}, and fper(x + d) = fper(x)
denotes an arbitrary d-periodic function.

Equation (13) can trivially be extended to
(

R⊕
r=1

qr

)
⊕
(

S⊕
s=1

(−qs)

)
∈ QPBC\{0} ⇒

∫ Nd

0

dx
djfper(x)

dxj

R∏
r=1

djrΨB
nr,qr

(x)
dxjr

×
S∏

s=1

djs [ΨB
ns,qs

(x)]
dxjs

∗

= 0, (14)

where we make use of the fact that ΨB∗
n,q and ΨB

n,−q differ
at most by a constant phase factor.

Most generally one can extend equation (13) to
∫ Nd

0

dxI(x) = 0, (15)

where the integrand I(x) is any sequence of terms belong-
ing to the set

{d/dx, ΨB
nr,qr

(x), [ΨB
ns,qs

(x)]∗, fper
t (x)}, (16)

where additionally pairs of parentheses can be inserted
appropriately and operators act from right to left as usual.
Once again(⊕

r

qr

)
⊕
(⊕

s

(−qs)

)
∈ QPBC\{0}. (17)

For example valid integrands are
d/dxΨB

n1,q1
(x)fper

1 (x)ΨB
n2,q2

(x)[d/dxΨB
n3,q3

(x)]fper
2 (x)

(with q1 ⊕ q2 ⊕ q3 ∈ QPBC\{0}), where the
first d/dx acts on the rest of the term, or
[ΨB

n1,q1
(x)]∗d2/dx2fper

1 (x)ΨB
n2,q2

(x) (with −q1 ⊕ q2 ∈
QPBC\{0}) where d2/dx2 acts on the product
fper
1 (x)ΨB

n2,q2
(x). This last generalization follows

from equation (14) by applying the product rule of
differentiation.

The proof for equation (13) can be seen from two per-
spectives. On the one hand, it is well known [2] that

∫ L

0

dxfper(x) exp
(
iq

(k)
PBCx

)
= 0, if k �= 0, (18)

and obviously
∫ L

0

dxfper(x) exp

(
i
∑

r

qrx

)
= 0, if

∑
r

qr ∈ QPBC\{0},

(19)
for otherwise arbitrary wave numbers qr from Qd

c . Equa-
tions (13) and (19) are equivalent taking into account
the translational invariance of the differential operator.
Normally relations such as equation (19) are widely used
in solid state physics but all summands in

∑
r qr are re-

stricted to belong to QPBC as only PBCs are considered.
Equation (13) extends the well known selection rules the-
orem to uncountably many well-defined combinations of
wave numbers q from the domain of continuous quasi mo-
menta for finite locally periodic open systems.

In Appendix A we discuss the proof of equa-
tions (13–15) from a rigorous group theoretic point
of view.

4 Applications to specific cases

4.1 Vanishing integrals involving two resonant Bloch
functions

Identities involving two resonant Bloch functions ΨB

n,q
(k)
res

and ΨB

n′,q(k′)
res

which follow from equation (13) are

q(k)
res ⊕ q(k′)

res ∈ QPBC \ {0} ⇒
∫ Nd

0

dx
djfper(x)

dxj

dlΨB

n,q
(k)
res

(x)

dxl

dmΨB

n′,q(k′)
res

(x)

dxm
= 0, (20)

where j, l, m ∈ N ∪ {0}.
For example an extension of equation (A2) in refer-

ence [10] to position dependent effective masses m(x) is
of the form of equation (20) with k = k′, j = 0, fper(x) =
1/m(x), l = 0, m = 1.
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4.2 Vanishing matrix elements for specific Bloch
functions

Equation (14) allows to consider matrix elements of the
form 〈ΨB

ni,qi
|Â|ΨB

nj,qj
〉Nd, where Â is a periodic differential

operator with respect to space, i.e.

Â(x) =
∑

l

al(x)
dl

dxl
, al(x + d) = al(x) (21)

and 〈·〉Nd denotes projection onto the finite space region
[0, Nd], i.e.

〈Ψ |Â|Φ〉Nd := 〈Ψ |ÂP̂FPS|Φ〉, (22)

where P̂FPS =
∫ Nd

0
dx |x〉〈x|. Since the rotation group Qd

c

[cf. Eq. (12)] can be trivially decomposed in cosets with
respect to QPBC:

Qd
c =

⋃
qNd

c

(
qNd
c ⊕ QPBC

)
, qNd

c ∈ (−π/Nd, π/Nd] =

(−q(1)
res , q

(1)
res ], (23)

the following relation holds for any operator Â of the form
given in equation (21): All matrix elements of Â for two
different Bloch waves (of the same or of different bands)
with wave numbers qi and qj in the same coset of QPBC

vanish, i.e.

qi �= qj ; qi, qj ∈ qNd
c ⊕ QPBC ⇒ 〈ΨB

ni,qi
|Â|ΨB

nj ,qj
〉Nd = 0.

(24)
Of course, the condition is equivalent to qj −qi = 2kπ

Nd �= 0.
A special case of this situation is the vanishing of

matrix elements of (Kramers-) degenerated resonant so-
lutions which emerge in the fundamental solution of the
open or bounded finite periodic system,

〈ΨB

n,q
(±k)
res

|Â|ΨB

n,q
(∓k)
res

〉Nd = 0, (25)

since q
(−k)
res , q

(k)
res ∈ q

(k)
res ⊕ QPBC.

4.3 Orthogonality relations

Setting Â = � in equation (24) we obtain the following
orthogonality relation: Two different Bloch waves (of the
same or of different bands) with wave numbers qi and qj

in the same coset of QPBC are orthogonal, i.e.

qi �= qj ; qi, qj ∈ qNd
c ⊕ QPBC ⇒ 〈ΨB

ni,qi
|ΨB

nj ,qj
〉Nd = 0.

(26)
Again, the condition is equivalent to qj − qi = 2kπ

Nd �= 0.
Similarly to equation (25) we get orthogonality of

(Kramers-) degenerated resonant solutions, i.e.

〈ΨB

n,q
(±k)
res

|ΨB

n,q
(∓k)
res

〉Nd = 0. (27)

5 Expectation values for specific
superpositions of Bloch functions

We consider (normalized) superpositions composed of
Bloch waves from arbitrary bands (with band indices ni)
for which all reduced Bloch wave numbers qi belong to the
same coset of QPBC but are different, i.e.

|Ψ〉 =
∑

i

αi|ΨB
ni,qi

〉,
∑

i

|αi|2 = 1,

where (∀i : qi ∈ qNd
c ⊕ QPBC) ∧ (i �= i′ ⇒ qi �= qi′).

(28)

These superpositions can consist at most of N Bloch waves
with corresponding N different q-values q1, . . . , qN ∈
qNd
c ⊕ QPBC. The number of different bands involved in

this superposition can be any number between 1 and N .
Superpositions of the form given in equation (28) have

a special property following directly from equation (24):
the expectation value of a periodic differential operator
restricted to a finite domain of N periods [cf. Eq. (21)]
is equal to the sum of the weighted expectation values of
that operator with respect to the individual Bloch waves
constituting the superposition:

〈Â〉Nd =
〈∑

i

αiΨ
B
ni,qi

∣∣∣Â∣∣∣∑
j

αjΨ
B
nj ,qj

〉
Nd

=
∑

i

〈αiΨ
B
ni,qi

|Â|αiΨ
B
ni,qi

〉Nd

=
∑

i

|αi|2〈ΨB
ni,qi

|Â|ΨB
ni,qi

〉Nd. (29)

Note that these expectation values are time independent.
Indeed the time dependence of the wave function |Ψ(t)〉 =∑

i αi(0) exp(−ιE(ni, qi)t/�)|ΨB
ni,qi

〉 is not reflected in the
expectation value:

〈Â(t)〉Nd =
∑

i

|αi(0)|2〈ΨB
ni,qi

|Â|ΨB
ni,qi

〉Nd = 〈Â(0)〉Nd.

(30)

5.1 A set of operators which have real expectation
values with respect to Bloch functions in L2([0, Nd])

Next we concentrate on a set of operators ÂH that are
known to be self-adjoint with domains that are dense in
L2(R). First we note that such operators are in general
non-self-adjoint over L2([0, Nd]). As an example consider
the momentum operator ÂH = p̂ = −i� d

dx on the domain
[0, Nd]. Partial integration gives

〈ΨB
ni,qi

|p̂|ΨB
nj ,qj

〉Nd = −i�

∫ Nd

0

[ΨB
ni,qi

(x)]∗[ΨB
nj ,qj

(x)]′dx

= −i�
[
(ΨB∗

ni,qi
ΨB

nj ,qj
)(Nd) − (ΨB∗

ni,qi
ΨB

nj ,qj
)(0)

]

+ 〈ΨB
nj ,qj

|p̂|ΨB
ni,qi

〉∗Nd. (31)
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The operator is clearly non-symmetric (and therefore non-
self-adjoint [14]) as the boundary term on the right hand
side does not vanish for arbitrary Bloch waves. Therefore
such operators do not have real expectation values with re-
spect to arbitrary linear combinations of Bloch functions.

The set of operators which we study is built by (a) op-
erators of the form D̂

(n)
H =

(
−i d

dx

)n
, n ∈ N, (b) real valued

periodic functions B̂ : R → R, B̂(x) = B̂(x + d), (c) sym-
metrized products of operators D̂

(n)
H and B̂, e.g. ÂH =

D̂
(n)
H B̂D̂

(n)
H , ÂH = B̂D̂

(n)
H B̂, ÂH = 1

2

(
D̂

(n)
H B̂ + B̂D̂

(n)
H

)
and similar products with more operators. Such opera-
tors appear frequently in the context of periodic semi-
conductor heterostructures (superlattices). For a peri-
odic potential V (x) and a periodic effective mass m(x),
the momentum operator p̂, the velocity operator v̂, and
the most commonly used Hamiltonian Ĥ are given by
p̂ = �D̂

(1)
H , v̂ = �

2

(
D̂

(1)
H m−1(x) + m−1(x)D̂(1)

H

)
, Ĥ =

�
2

2 D
(1)
H m−1(x)D(1)

H + V (x), respectively.
We now prove that the expectation values of ÂH

with respect to Bloch functions in L2([0, Nd]), i.e.
〈ΨB

n,q|ÂH |ΨB
n,q〉Nd, are still real numbers. To this end we

start with the first order differential operator D̂
(1)
H =

−i d
dx . Inserting 〈x|ΨB

ni,qi
〉 = 〈x|ΨB

nj ,qj
〉 = 〈x|ΨB

n,q〉 =
un,q(x) exp(iqx) into equation (31) leads to a purely pe-
riodic function u∗

n,qun,q(x) in the boundary term, which
therefore vanishes. Thus

〈ΨB
n,q|D̂

(1)
H |ΨB

n,q〉Nd =

〈ΨB
n,q|D̂

(1)
H |ΨB

n,q〉∗Nd ⇔ 〈ΨB
n,q|D̂

(1)
H |ΨB

n,q〉Nd ∈ R. (32)

For an nth order differential operator ÂH iterative par-
tial integration leads to n boundary terms. Regardless of
the order n the exponential terms exp(∓iqx) cancel and
purely periodic functions remain again. Thus

〈ΨB
n,q|ÂH |ΨB

n,q〉Nd ∈ R. (33)

As a consequence, together with equation (29), the opera-
tors which we studied in this section have real expectation
values for superpositions of the form of equation (28), i.e.

(∀i : qi ∈ qNd
c ⊕ QPBC) ∧ (i �= i′ ⇒ qi �= qi′) =⇒〈∑

i

αiΨ
B
ni,qi

∣∣∣ÂH

∣∣∣∑
j

αjΨ
B
nj ,qj

〉
Nd

=
∑

i

|αi|2〈ΨB
ni,qi

|ÂH |ΨB
ni,qi

〉Nd ∈ R. (34)

5.2 Resonant superpositions

Choosing one of the qi’s in the superposition equation (28)
to be a resonant Bloch wave number q

(k)
res, results in a linear

combinations of resonant states composed of either even
or odd k values only:

|Ψ〉 =
∑
k∈K

αk|ΨB

nk,q
(k)
res

〉,
∑

k

|αk|2 = 1, (35)

where K depends on whether N is even or odd: For N =
2m we have the set of possible even k values K = {k ∈
2Z, −N + 2 ≤ k ≤ N} and the set of possible odd k
values K = {k ∈ 2Z+1, −N + 1 ≤ k ≤ N − 1}. For
N = 2m + 1 we have K = {k ∈ 2Z, −N + 1 ≤ k ≤ N − 1}
and K = {k ∈ 2Z+1, −N + 2 ≤ k ≤ N}, resp.

Then

〈Â〉Nd =
∑
k∈K

|αk|2〈ΨB

nk,q
(k)
res

|Â|ΨB

nk,q
(k)
res

〉Nd ∈ R. (36)

Note that we have implicitly included the band edge func-
tions |ΨB

nk,q
(0)
res

〉, |ΨB

nk,q
(N)
res

〉 in the decomposition which are
strictly speaking non-resonant, but their corresponding
Bloch wave numbers belong to the extended group Q̃res.

For a CQC system we have seen that (cf. Sect. 2.2)
q
(k)
CQC = q

(k)
res and that |αk| = |α−k|. Consequently

〈Â〉Nd =
∑

1≤k≤N−1
k∈K

|αk|2
(
〈ΨB

nk,q
(k)
CQC

|Â|ΨB

nk,q
(k)
CQC

〉Nd

+〈ΨB

nk,q
(−k)
CQC

|Â|ΨB

nk,q
(−k)
CQC

〉Nd

)
∈ R, (37)

and operators Â that fulfill

〈ΨB

nk,q
(k)
CQC

|Â|ΨB

nk,q
(k)
CQC

〉Nd = −〈ΨB

nk,q
(−k)
CQC

|Â|ΨB

nk,q
(−k)
CQC

〉Nd

(38)
have necessarily a vanishing expectation value 〈Â〉Nd.

5.3 Velocity expectation value at resonance

Equation (36) shows that the velocity expectation value
for a linear combination of several resonant Bloch waves,
equation (35), is given by

〈v̂〉Nd =
∑
k∈K

|αk|2vg(nk, q(k)
res) ∈ R, (39)

where vg(n, q) = �
−1∂En,q/∂q denotes the group velocity,

which is the velocity expectation value of a Bloch wave.
For a superposition of two energetically degenerated

resonant solutions only, i.e.

|Ψ〉 = α+|ΨB

n,q
(k)
res

〉 + α−|ΨB

n,−q
(k)
res

〉, |α+|2 + |α−|2 = 1.

(40)
Equation (39) and vg(n,−q) = −vg(n, q) show that the
velocity expectation value is simply given by

〈v̂〉Nd =
(
|α+|2 − |α−|2

)
vg(n, q(k)

res) ∈ R. (41)

This result has been obtained in reference [10] by us-
ing rather elaborate calculations. For a CQC systems,
where |α+| = |α−|, 〈v̂〉Nd = 0 is obviously fulfilled as
it should be.
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6 Conclusions

In this paper we have discussed different properties of
Bloch waves in finite periodic systems with an integer
number of unit cells related to their Bloch wave num-
bers. We have summarized wave number quantizations
and their mutual interrelations for finite periodic sys-
tems in three different cases: periodic boundary conditions
[PBC, Eq. (5)], complete quantum confinement [CQC,
Eq. (8)] and resonant states in open systems [OBC, equa-
tion (11)]. Further, useful vanishing integral identities [cf.
Eqs. (13–17)] for open finite periodic systems, which are
generalizations of well known similar identities for PBC
systems have been derived. The main innovation in this
respect is related to the fact that symmetry properties of
the PBC system manifested by the special role of the set
QPBC [cf. Eq. (6)] reappear in finite systems despite their
lack of obvious symmetry. We have shown that all matrix
elements of periodic differential operators [as defined in
Eq. (21)] – restricted to a finite domain with an integer
number of unit cells – for two different Bloch waves (of
the same or of different bands) with wave numbers in the
same coset of QPBC vanish. Consequently these two Bloch
waves must also be orthogonal. Finally we have considered
superpositions of Bloch waves with wave numbers that be-
long to the same coset of QPBC. The expectation value of
the discussed periodic differential operators [cf. Eq. (21)]
with respect to these superpositions is time independent,
real-valued and equal to the sum of the weighted expec-
tation values with respect to the individual Bloch waves
constituting the superposition. In addition some specific
applications of these general results are presented.

It is a great pleasure to thank R. Dirl and P. Kasperkovitz for
reading a previous version of the manuscript and for interesting
and fruitful discussions and D.W.L. Sprung for reading and
commenting the manuscript.

Appendix A: Group theoretical proofs

We start by introducing some appropriate general group
theoretical concepts and then use the symmetry properties
of the problem at hand for performing the proof.

A.1 Relevant groups and irreducible representations
thereof

The symmetry group of (one-dimensional) infinite peri-
odic systems with period d is the one-dimensional discrete
translation group Td, which is generated by an elementary
translation d:

Td = d Z, n, m ∈ Z, gn = nd,

gm = md ∈ Td ⇒ gn ∗ gm = (n + m)d = gn+m. (A.1)

As Td is abelian it is well known that its irreducible rep-
resentations are one-dimensional and are of the form

Dq
Td

(gn) = exp(−iqnd), q ∈ (−π/d, π/d]. (A.2)

The irreducible representations of Td form an abelian
group T̃d with the tensor product as group operation:

Dq1
Td

(gn)
⊗

Dq2
Td

(gn) = exp(−iq1nd) exp(−iq2nd)

= exp[−i(q1 + q2)nd] = exp[−i(q1⊕ q2)nd] = Dq1⊕q2
Td

(gn),
(A.3)

where q1 ⊕ q2 denotes the minimal residue of (q1 + q2)
mod 2π/d, or in physical terms, the sum q1 + q2 folded
back into the first Brillouin zone (−π/d, π/d] [cf. Eq. (7)].

Indeed, (i) the tensor product of two different irre-
ducible representations of this group is also irreducible,
(ii) this tensor product is associative and commutative,
(iii) the unit element is given by the trivial representation
D0

Td
= 1, whereas (iv) the inverse element of Dq

Td
is its

complex conjugate D−q
Td

.
Clearly the group T̃d and Qd

c [cf. Eq. (12)] are isomor-
phic through the mapping q ↔ exp(−iq ◦).

We now introduce the symmetry group of a system
having translation symmetry Td in which additionally pe-
riodic boundary conditions are imposed. This symmetry
group is the cyclic factor group Tper = Td/TNd, where TNd

is a subgroup of Td generated by the elementary transla-
tion Nd.

Tper is explicitly defined as

Tper = {h0 = 0, h1 = d, h2 = 2d, . . . ,hN−1 = (N − 1)d},
hi � hj = (i + j)d mod Nd, (A.4)

where � is the group operation in Tper . All translations
of the form mNd, m ∈ Z act trivially within Tper .

The irreducible representations of the cyclic group
Tper are given by

Dq̄k

Tper
(hl) = exp(−iq̄kld), q̄k =

2kπ

Nd
, 0 ≤ k, l ≤ N −1.

(A.5)
Analogous to the case of the group Td the irreducible rep-
resentations of Tper form an abelian group T̃per which
is isomorphic to QPBC. As a side note we mention that
– since Tper is finite and abelian – it is also isomorphic
to T̃per .

The irreducible representations of Td with q = q
(k)
PBC

are irreducible representations of Tper . This follows from
the fact that (i) the set of all possible indices q̄k of ir-
reducible representations of Tper coincides with the set
QPBC of all q

(k)
PBC, cf. equation (6), and (ii) any gen-

eral translation gn = nd ∈ Td can be represented as
nd = ld + mNd, where ld ∈ Tper .

Indeed

D
q
(k)
PBC

Td
(gn)=exp(−iq

(k)
PBCnd)=exp(−iq

(k)
PBCld)=D

q
(k)
PBC

Tper
(hl).

(A.6)
In summary, we have introduced a number of groups which
are related as follows:

〈TNd, ∗〉 ⊂ 〈Td, ∗〉, 〈Tper , �〉 = 〈Td, ∗〉/〈TNd, ∗〉
∼= 〈T̃per ,

⊗
〉 ∼= 〈QPBC,⊕〉 ⊂ 〈Qd

c ,⊕〉 ∼= 〈T̃d,
⊗

〉.
(A.7)
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A.2 “Selection rules” theorem

Consider a set of orthonormalized basis functions {fk(x) :
k = 1, 2, . . . , n}, where each function fk(x) transforms ac-
cording to an irreducible representation D of some group
G, i.e.

[U(g)fk](x) = fk(g−1x) =
n∑

j=1

D(g)j,kfj(x), ∀g ∈ G.

(A.8)
It follows from standard representation theory that

D �= D0 ⇒
∫
M

dx fk(x) = 0, (A.9)

where D0 is the identity representation of G and M is a
group invariant manifold. This general theorem [15,16] is
the basis of the quantum mechanic selection rules and fol-
lows from the well known orthogonality relations of group
representations [15–17].

In the case of G = Tper all irreducible representations

are one-dimensional, i.e. D
q
(k)
PBC

Tper
(nd) = exp(−iq

(k)
PBCnd);

fk(x) = fper(x) exp(iq(k)
PBCx) and M = [0, Nd].

In this case one can directly see the validity of equa-
tion (A.9):

k �= 0 ⇒
∫ Nd

0

dx fper(x)eiq
(k)
PBCx

=

(
N−1∑
l=0

exp(iq(k)
PBCld)

)∫ d

0

fper(x)eiq
(k)
PBCxdx

=
1 − exp(±i2πk)

1 − exp(±i2πk/N)

∫ d

0

fper(x)eiq
(k)
PBCxdx = 0, (A.10)

due to the vanishing numerator. This holds only if k is not
a multiple of N , which is, of course, fulfilled for k ∈ KPBC

[cf. Eq. (5)].

A.3 Proof of equations (13–15)

To prove equation (13) one should take into account
that provided a function f(x) transforms according to
an irreducible representation of a translation group its
derivatives dn

dxn f(x) also transform according to the same
representation of this group. This fact follows from the in-
variance of the derivative operator with respect to trans-
lations.

The integrand of equation (13) transforms with respect
to the infinite translation group Td as

D0
Td

⊗
{

R⊗
r=1

Dqr

Td

}
= D0

Td
⊗ D

⊕
r qr

Td
= D

q
(k)
PBC

Td
, k �= 0.

(A.11)

From equation (A.6) we know that D
q
(k)
PBC

Td
= D

q
(k)
PBC

Tper
.

This result together with equation (A.9) completes the
proof.

Taking into account that [Dqs

Td
]∗ = D−qs

Td
, equation (14)

follows directly from equation (A.11). Equation (15) fol-
lows also directly from equation (A.11) taking additionally
into account the translational invariance of the differenti-
ation operator.

It should be noted that the essential step in the proof
can be seen as a embedding the problem at hand into
another one with appropriate symmetries. The result is
then a consequence of the symmetry properties of this
second problem.
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